Browning of White Fat: Novel Insight Into Factors, Mechanisms, and Therapeutics.

نویسندگان

  • Nevena Jeremic
  • Pankaj Chaturvedi
  • Suresh C Tyagi
چکیده

What is more interesting about brown adipose tissue (BAT) is its ability to provide thermogenesis, protection against obesity by clearing triglycerides, releasing batokines, and mitigating insulin resistance. White adipose tissue (WAT) on the other hand stores excess energy and secretes some endocrine factors like leptin for regulating satiety. For the last decade there has been an increasing interest in the browning of fat keeping in view its beneficial effects on metabolic disorders and protection in the form of perivascular fat. Obesity is one such metabolic disorder that leads to significant morbidity and mortality from obesity-related disorders such as type 2 diabetes mellitus (T2D) and cardiovascular disease risk. Browning of white fat paves the way to restrict obesity and obesity related disorders. Although exercise has been the most common factor for fat browning; however, there are other factors that involve: (1) beta aminoisobutyric acid (BAIBA); (2) gamma amino butyric acid (GABA); (3) PPARɣ agonists; (4) JAK inhibition; and (5) IRISIN. In this review, we propose two novel factors musclin and TFAM for fat browning. Musclin a myokine released from muscles during exercise activates PPARɣ which induces browning of WAT that has beneficial metabolic and cardiac effects. TFAM is a transcription factor that induces mitochondrial biogenesis. Since BAT is rich in mitochondria, higher expression of TFAM in WAT or TFAM treatment in WAT cells can induce browning of WAT. We propose that fat browning can be used as a therapeutic tool for metabolic disorders and cardiovascular diseases. J. Cell. Physiol. 232: 61-68, 2017. © 2016 Wiley Periodicals, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

White adipose tissue browning and obesity

Obesity and metabolic disorders are major health concerns worldwide. Although a range of therapies have been developed, these pharmaceutical treatments often have adverse side effects or limited efficacy. Therefore, there is a growing need of novel therapeutics to prevent or treat obesity. Obesity is thought to be caused by an imbalance between energy intake and energy consumption. Increasing e...

متن کامل

Switching harmful visceral fat to beneficial energy combustion improves metabolic dysfunctions

Visceral fat is considered the genuine and harmful white adipose tissue (WAT) that is associated to development of metabolic disorders, cardiovascular disease, and cancer. Here, we present a new concept to turn the harmful visceral fat into a beneficial energy consumption depot, which is beneficial for improvement of metabolic dysfunctions in obese mice. We show that low temperature-dependent b...

متن کامل

Deletion of p22phox-dependent oxidative stress in the hypothalamus protects against obesity by modulating β3-adrenergic mechanisms.

A role for oxidative stress in the brain has been suggested in the pathogenesis of diet-induced obesity (DIO), although the underlying neural regions and mechanisms remain incompletely defined. We tested the hypothesis that NADPH oxidase-dependent oxidative stress in the paraventricular nucleus (PVN), a hypothalamic energy homeostasis center, contributes to the development of DIO. Cre/LoxP tech...

متن کامل

Dietary Factors Promoting Brown and Beige Fat Development and Thermogenesis.

Brown adipose tissue (BAT) is a specialized fat tissue that has a high capacity to dissociate cellular respiration from ATP utilization, resulting in the release of stored energy as heat. Adult humans possess a substantial amount of BAT in the form of constitutively active brown fat or inducible beige fat. BAT activity in humans is inversely correlated with adiposity, blood glucose concentratio...

متن کامل

Wnt inhibition enhances browning of mouse primary white adipocytes

The global epidemic in obesity and metabolic syndrome requires novel approaches to tackle. White adipose tissue, traditionally seen as a passive energy-storage organ, can be induced to take on certain characteristics of brown fat in a process called browning. The "browned" white adipose tissue, or beige fat, is a potential anti-obesity target. Various signaling pathways can enhance browning. Wn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cellular physiology

دوره 232 1  شماره 

صفحات  -

تاریخ انتشار 2017